题目内容
【题目】如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为( )
A. B. C. D. 2
【答案】B
【解析】
记AC与PQ的交点为O,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短;过O作BC的垂线P′O,则PO最短为P′O;
接下来可证明△P′OC和△ABC相似,进而利用相似三角形的性质即可求出PQ的最小值.
解:记AC与PQ的交点为O.
∵∠BAC=90°,AB=3,AC=4,
∴BC==5.
∵四边形APCQ是平行四边形,
∴PO=QO,CO=AO,
∴PQ最短也就是PO最短.
过O作BC的垂线OP′.
∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,
∴△CAB∽△CP′O,
∴,
∴OP′=,
∴则PQ的最小值为2OP′=,
故答案为:.
练习册系列答案
相关题目