题目内容
【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2 ,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证: = ;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
【答案】
(1)(2 ,2)
(2)
解:存在.理由如下:
连接BE,取BE的中点K,连接DK、KC.
∵∠BDE=∠BCE=90°,
∴KD=KB=KE=KC,
∴B、D、E、C四点共圆,
∴∠DBC=∠DCE,∠EDC=∠EBC,
∵tan∠ACO= = ,
∴∠ACO=30°,∠ACB=60°
①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,
∴∠DBC=∠DCE=∠EDC=∠EBC=30°,
∴∠DBC=∠BCD=60°,
∴△DBC是等边三角形,
∴DC=BC=2,
在Rt△AOC中,∵∠ACO=30°,OA=2,
∴AC=2AO=4,
∴AD=AC﹣CD=4﹣2=2.
∴当AD=2时,△DEC是等腰三角形.
②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,
∴∠ABD=∠ADB=75°,
∴AB=AD=2 ,
综上所述,满足条件的AD的值为2或2
(3)
解:①由(2)可知,B、D、E、C四点共圆,
∴∠DBC=∠DCE=30°,
∴tan∠DBE= ,
∴ = .
②如图2中,作DH⊥AB于H.
在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,
∴DH= AD= x,AH= = x,
∴BH=2 ﹣ x,
在Rt△BDH中,BD= = ,
∴DE= BD= ,
∴矩形BDEF的面积为y= [ ]2= (x2﹣6x+12),
即y= x2﹣2 x+4 ,
∴y= (x﹣3)2+ ,
∵ >0,
∴x=3时,y有最小值 .
【解析】解:(1)∵四边形AOCB是矩形,
∴BC=OA=2,OC=AB=2 ,∠BCO=∠BAO=90°,
∴B(2 ,2).
所以答案是(2 ,2).
【考点精析】本题主要考查了矩形的性质的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等才能正确解答此题.