题目内容
如图,随机的闭合开关中的三个,能够使灯泡同时发光的概率是( )
A. 1 B. C. D.
已知点P(2-a,3a+6)到两坐标轴的距离相等,则点P的坐标为( )
A. (3,3) B. (6,-6) C. (3,3)或(6,-6) D. (3,-3)
已知二次函数y=3(x﹣1)2+k的图象上三点A(2,y1),B(3,y2),C(﹣4,y3),则y1、y2、y3的大小关系是_____.
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
有A、B两个不透明的口袋,每个口袋里装有两个相同的球,A袋中的两个球上分别写了“细”“致”的字样,B带出那两个球上分别写了“信”“心”的字样,若从每个口袋里各摸出一个球,在刚好能组成“细心”这样的概率是______.
下列说法正确的是( )
A. 袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球
B. 天气预报“明天降水概率10%”,是指明天有10%的时间会下雨
C. 某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖
D. 连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上
已知:△ABC,∠A、∠B、∠C之和为多少?为什么?
解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延长BC到E
∵∠ACD=∠ (已作)
AB∥CD( )
∴∠B= ( )
而∠ACB+∠ACD+∠DCE=180°
∴∠ACB+ + =180°( )
下列运算中,正确的是( )
A. a2•a3=a6 B. (a﹣b)(b﹣a)=a2﹣b2 C. (ab2)3=ab6 D. (﹣2a2)2=4a4
在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=________°.