题目内容
计算(﹣2)÷(﹣)的结果为_____.
一个正多边形的内角和大于等于540度而小于1000度,则这个正多边形的每一个内角可以是________度。(填出一个即可)
解方程:
.
如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(,)和B(4,m),点P是AB上的动点,设点P的横坐标为n,过点P作PC⊥x轴,交抛物线于点C,与x轴交于M点.
(1)求抛物线的表达式;
(2)点P是线段AB上异于A,B的动点,是否存在这样的点P,使线段PC的长有最大值?若存在,求出这最大值,若不存在,请说明理由;
(3)点P在直线AB上自由移动,当三个点C,P,M中恰有一点是其它两点所连线段的中点时,请直接写出m的值.
已知:关于x的方程x2+2mx+m2-1=0
(1)不解方程,判别方程根的情况;
(2)若方程有一个根为3,求m的值.
四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是( )
A. B. C. D.
阅读下面材料:
小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求的值.
小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为 .
参考小昊思考问题的方法,解决问题:
如图 3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .
(1)求的值;
(2)若CD=2,则BP=__________.
下列运算正确的是( )
A.3a+4b=12a
B.(ab3)2=ab6
C.(5a2﹣ab)﹣(4a2+2ab)=a2﹣3ab
D.x12÷x6=x2
在照明系统模拟控制电路实验中,研究人员发现光敏电阻值R(单位:Ω)与光照度E(单位:lx)之间成反比例函数关系,部分数据如下表所示,则光敏电阻值R与光照度E的函数表达式为________.