题目内容

【题目】如图,四边形ABCD,AB=AD,∠BAD=90°,∠BCD=30°,∠BAD的平分线AE与边DC相交于点E,连接BEAC,AC=7△BCE的周长为16,则线段BC的长为____.

【答案】6

【解析】

根据题意可先证明△ADE≌△ABE,得到DE=BE,然后分别作BFAH垂直于CDCD于点FH,作AG垂直于FB并交FB的延长线于点G,证明四边形AGFH是正方形,再设BC=2x,在RTBCF中,把三边都表示出来,根据勾股定理求x即可.

解:如图:

AE平分∠ BAD

∴∠BAE=∠EAD

又∵AB=ADAE=AE

∴△ADE≌△ABE

DE=BE,

∵△BCE的周长为16,即BC+CE+BE=16

BC+CE+DE=BC+CD=16

分别作BFAH垂直于CDCD于点FH,作AG垂直于FB并交FB的延长线于点G

∴在四边形AGFH中,∠GAH=90°,

又∵∠BAD=90°,

∴∠GAB=DAH,

AB=AD,∠AGB=AHD=90°,

∴△ABG≌△ADH

AG=AHBG=HD

∴四边形AGFH为正方形,

RTBCF中,∠BCD=30°,设BC=2x,则BF=xCF=xCD=16-2x

CD=CF+FH+HD=16-2x

CF+GF+HD=16-2x

x+x+BG+HD=16-2x

BG=DH,

DH=

CH=16-2x-=

AH=FG=BF+BG=x+=

RTACH中,AC2=CH2+AH2,即(72=2+2

解得x=3x=5(根据线段长大于0舍去),所以BC=2x=6.

故本题答案为:6.

练习册系列答案
相关题目

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

【答案】(1) 见解析; (2)3 ;(3)见解析.

【解析】试题分析:(1)根据圆周角定理得到BAC=90°,根据三角形的内角和得到ACB=60°根据切线的性质得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到结论;

(2)根据SAOC=,得到SACF=,通过ACF∽△DAE,求得SDAE=,过AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;

(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,过OOGEFG,根据全等三角形的性质得到OG=OA,即可得到结论.

试题解析:(1)证明:BCO的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切线,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,过AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFOOA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFOOF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切线.

型】解答
束】
25

【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.

(1)填空:点B的坐标为   

(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:

②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网