题目内容
【题目】如图在△ABC中,AB=AC,以BC为直角边作等腰Rt△BCD,∠CBD=90°,斜边CD交AB于点E.
(1)如图1,若∠ABC=60°,BE=4,作EH⊥BC于H,求线段CE的长;
(2)如图2,作CF⊥AC,且CF=AC,连接BF,且E为AB中点,求证:CD=2BF.
【答案】(1)2;(2)详见解析.
【解析】
(1)由直角三角形的性质可求BH=2,EH=2,由等腰直角三角形的性质可得EH=CH=2,即可求EC的长;、
(2)过点A作AM⊥BC,由平行线分线段成比例可得CD=2CN,AN=BD,由“SAS”可证△ACN≌△CFB,可得结论.
解:(1)∵∠ABC=60°,EH⊥BC,
∴∠BEH=30°,
∴BE=2BH=4,EH=BH,
∴BH=2,EH=2,
∵∠CBD=90°,BD=BC,
∴∠BCD=45°,且EH⊥BC,
∴∠BCD=∠BEC=45°,
∴EH=CH=2,
∴CE=EH=2;
(2)如图,过点A作AM⊥BC,
∵AB=AC,AM⊥BC,
∴BM=MC=BC=DB,
∵∠DCB=45°,AM⊥BC,
∴∠DCB=∠MNC=45°,
∴MN=MC=BD,
∵AM∥DB,
∴,,
∴CD=2CN,AN=BD,
∵CF⊥AC,∠BCD=45°,
∴∠ACD+∠BCF=45°,且∠ACD+∠MAC=45°,
∴∠BCF=∠MAC,且AC=CF,BC=AN,
∴△ACN≌△CFB(SAS)
∴BF=CN,
∴CD=2BF
练习册系列答案
相关题目