题目内容

【题目】如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连接OA,此时有OA∥PE.
(1)求证:AP=AO;
(2)若tan∠OPB= ,求弦AB的长;
(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为 , 能构成等腰梯形的四个点为

【答案】
(1)证明:∵PG平分∠EPF,

∴∠DPO=∠BPO,

∵OA∥PE,

∴∠DPO=∠POA,

∴∠BPO=∠POA,

∴PA=OA


(2)解:过点O作OH⊥AB于点H,则AH=HB= AB,

∵tan∠OPB= ,∴PH=2OH,

设OH=x,则PH=2x,

由(1)可知PA=OA=10,∴AH=PH﹣PA=2x﹣10,

∵AH2+OH2=OA2,∴(2x﹣10)2+x2=102

解得x1=0(不合题意,舍去),x2=8,

∴AH=6,∴AB=2AH=12


(3)P、A、O、C;A、B、D、C;P、A、O、D;P、C、O、B
【解析】(3)解:P、A、O、C;A、B、D、C或P、A、O、D或P、C、O、B. (1)由已知条件“射线PG平分∠EPF”求得∠DPO=∠BPO;然后根据平行线的性质,两直线OA∥PE,内错角∠DPO=∠POA;最后由等量代换知∠BPO=∠POA,从而根据等角对等边证明AP=AO;(2)设OH=x,则PH=2x.作辅助线OH(“过点O作OH⊥AB于点H”),根据垂径定理知AH=HB= AB;又由已知条件“tan∠OPB= ”求得PH=2OH;然后利用(1)的结果及勾股定理列出关于x的一元二次方程,解方程即可;(3)根据菱形的性质、等腰梯形的判定定理填空.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网