题目内容
(1)解方程:; (2)解不等式组:.
若是方程的解,则________.
已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC.求证:AD=BE.
如图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是( )
A. B. C. D.
如图,已知点D、E分别在△ACD的边AB和AC上,已知DE∥BC,DE=DB.
(1)请用直尺和圆规在图中画出点D和点E(保留作图痕迹,不要求写作法),并证明所作的线段DE是符合题目要求的;
(2)若AB=7,BC=3,请求出DE的长.
若正多边形的一个外角是45°,则该正多边形的边数是_________.
某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )
④ ③ ② ①
A. ①反映了建议(Ⅰ),③反映了建议(Ⅱ) B. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)
C. ①反映了建议(Ⅱ),③反映了建议(Ⅰ) D. ②反映了建议(Ⅱ),④反映了建议(Ⅰ)
已知:,则代数式的值为_____.
建立模型:
(1)如图 1,已知△ABC,AC=BC,∠C=90°,顶点C在直线 l 上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证△CAD≌△BCE.
模型应用:
(2)如图2,在直角坐标系中,直线l1:y=x+8与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2. 求l2的函数表达式.
(3)如图3,在直角坐标系中,点B(10,8),作BA⊥y轴于点 A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.