题目内容
【题目】如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.
(1)求证:△ABE≌△CAD;
(2)求∠PBQ的度数.
【答案】(1)见解析;(2)30o
【解析】试题分析:(1)由等边三角形的性质可得AB=AC,∠BAC=∠C=60°,然后利用“边角边”即可证明两三角形;
(2)由SAS可得△ABE≌△CAD,进而得出对应角相等,再通过角之间的转化即可求解∠BPD的度数,进而求得结论.
试题解析:
∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠C=60°,
在△ABE与△CAD中,
∴△ABE≌△CAD(SAS);
(2)由(1)知△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠BPQ=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.
∴∠PBQ=90°-∠BPQ=30°.
练习册系列答案
相关题目