题目内容
【题目】如图所示,在四边形中,,分别是的中点,,则的长是___________.
【答案】
【解析】
根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数为30°,通过构造直角三角形求出MN.
解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,
∴PM=AB=2,PN=DC=2,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,
∴∠MPD=∠ABD=20°,∠BPN=∠BDC=80°,
∴∠MPN=∠MPD+∠NPD=20°+(180-80)°=120°,
∴∠PMN==30°.
过P点作PH⊥MN,交MN于点H.
∵HQ⊥MN,
∴HQ平分∠MHN,NH=HM.
∵MP=2,∠PMN=30°,
∴MH=PMcos60°=,
∴MN=2MH=2.
练习册系列答案
相关题目
【题目】有这样一个问题:探究函数和函数的图象之间的关系,小东根据学习函数的经验,通过画出两个函数图象后,再观察研究.
下面是小东的探究过程,请补充完成:
()下表是与的几组对应值.
… | … | ||||||||||||
… | … |
下表是与的几组对应值
… | … | ||||||||||||
… | … |
请补全表格__________.
()如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,请根据描出的点,在同一坐标系中画出和函数的图象.
()观察这两个函数的图象,发现这两个函数图象是关于直线成轴对称的,请画出这条直线.
()已知,借助函数图象比较, , 的大小(用“”号连接).