题目内容

如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.则∠BFD的度数为
60
60
°.
分析:根据等边三角形性质得出AB=AC,∠BAE=∠C=60°,证△ABE≌△CAD,推出∠ABE=∠CAD,根据三角形外角性质求出∠BFD=∠BAC,即可求出答案.
解答:解:∵△ABC是等边三角形,
∴AB=AC,∠BAE=∠C=60°,
在△ABE和△CAD中,
AB=AC
∠BAE=∠C
AE=CD

∴△ABE≌△CAD(SAS),
∴∠ABE=∠CAD,
∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°.
故答案为:60.
点评:本题考查了等边三角形的性质,三角形外角性质,全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网