题目内容

【题目】在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.
(1)求证:AC与⊙O相切.
(2)若BC=6,AB=12,求⊙O的面积.

【答案】
(1)证明:连接OE,

∵OD=OE,

∴∠ODE=∠OED,

∵BD=BF,

∴∠ODE=∠F,

∴∠OED=∠F,

∴OE∥BF,

∴∠AEO=∠ACB=90°,

∴AC与⊙O相切


(2)解:由(1)知∠AEO=∠ACB,又∠A=∠A,

∴△AOE∽△ABC,

设⊙O的半径为r,则

解得:r=4,

∴⊙O的面积π×42=16π


【解析】(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可;(2)证△AEO∽△ACB,得出关于r的方程,求出r即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网