题目内容

(10分)如图,已知抛物线与轴交于A(1,0),B(,0)两点,与轴交于点
C(0,3),抛物线的顶点为P,连结AC.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与轴交于点Q,求点D的坐标;
(3)抛物线对称轴上是否存在一点M,使得SMAP=2SACP,若存在,求出M点坐标;若不存在,请说明理由.

(10分)解(1)设此抛物线的解析式为:

∵抛物线与轴交于A(1,0)、B(两点,

又∵抛物线与轴交于点C(0,3)



……………3分
用其他解法参照给分
(2)∵点A(1,0),点C(0,3)
∴OA=1,OC=3,
∵DC⊥AC,OC⊥
∴△QOC∽△COA
,即
∴OQ=9,……………………4分
又∵点Q在轴的负半轴上,∴Q(
设直线DC的解析式为:,则
   解之得:
∴直线DC的解析式为:……………………5分
∵点D是抛物线与直线DC的交点,
   解之得:   (不合题意,应舍去)
∴点D(……………………6分
用其他解法参照给分
(3)如图,点M为直线上一点,连结AM,PC,PA
设点M(,直线轴交于点E,∴AE=2
∵抛物线的顶点为P,对称轴为
∴P(
∴PE=4
则PM=
∵S四边形AEPC=S四边形OEPC+SAOC
=
=
=……………………7分
又∵S四边形AEPC= SAEP+SACP
SAEP=
∴+SACP=……………………8分
∵SMAP=2SACP


……………………9分
故抛物线的对称轴上存在点M使SMAP=2SACP
点M(……………………10分
用其他解法参照给分

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网