题目内容

【题目】如图,已知E、F分别为平行四边形ABCD的对边AD、BC上的点,且DE=BF,EM⊥AC于M,FN⊥AC于N,EF交AC于点O,求证:

(1)EM=FN;
(2)EF与MN互相平分.

【答案】
(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,

∴∠EAM=∠FCN,

∵DE=BF,

∴AE=CF,∵EM⊥AC于M,FN⊥AC于N,∴∠AME=∠CNF=90°,

在△AEM和△CFN中,

∴△AEM≌△CFN(AAS),

∴EM=FN


(2)证明:连接EN、FM,如图所示:

∵EM⊥AC,FN⊥AC,

∴∠AME=∠EMN=∠FNC=∠FNM=90°,

∴EM∥FN,

又∵由(1)得EM=FN,

∴四边形EMFN是平行四边形,

∴EF与MN互相平分.


【解析】(1)根据已知易证△AEM≌△CFN,即可得出结论。
(2)要证EF与MN互相平分.只需证明四边形EMFN是平行四边形,由已知易证EM∥FN、EM=FN,即可得证。
【考点精析】通过灵活运用平行四边形的判定与性质,掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网