题目内容
【题目】已知二次函数y=x2﹣(2k+1)x+k2+k(k>0)
(1)当k=时,将这个二次函数的解析式写成顶点式;
(2)求证:关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根.
【答案】(1)(1, )(2)证明见解析
【解析】试题分析:(1)把k代入抛物线解析式,然后利用配方法可确定抛物线的顶点坐标;(2)计算判别式的值,然后判别式的意义进行证明.
试题解析:(1)把k=代入y=x2﹣(2k+1)x+k2+k(k>0)得y=x2﹣2x+,
因为y=(x﹣1)2﹣
所以抛物线的顶点坐标为(1,﹣ );
(2)△=(2k+1)2﹣4(k2+k)=1>0,
所以关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根.
练习册系列答案
相关题目
【题目】八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
类别 | 频数(人数) | 频率 |
小说 | 0.5 | |
戏剧 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合计 | 1 |
根据图表提供的信息,解答下列问题:
(1)八年级一班有多少名学生?
(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.