题目内容
如图,已知⊙B与△ABD的边AD相切于点C,AC=4,⊙B的半径为3,当⊙A与⊙B相切时,⊙A的半径是
- A.2
- B.7
- C.2或5
- D.2或8
D
分析:根据切线的性质可以求得BC的长,然后根据相切两圆的两种情况分类讨论即可.
解答:∵⊙B与△ABD的边AD相切于点C,AC=4,
∴BC=3,AB=5,
∵⊙A与⊙B相切,
∴当两圆外切时,⊙A的半径=5-3=2,
当两圆内切时,⊙A的半径=5+3=8.
故选D.
点评:本题考查了两圆之间的位置关系及勾股定理的知识,解题的关键是分类讨论,小心将另外一种情况漏掉.
分析:根据切线的性质可以求得BC的长,然后根据相切两圆的两种情况分类讨论即可.
解答:∵⊙B与△ABD的边AD相切于点C,AC=4,
∴BC=3,AB=5,
∵⊙A与⊙B相切,
∴当两圆外切时,⊙A的半径=5-3=2,
当两圆内切时,⊙A的半径=5+3=8.
故选D.
点评:本题考查了两圆之间的位置关系及勾股定理的知识,解题的关键是分类讨论,小心将另外一种情况漏掉.
练习册系列答案
相关题目