题目内容
函数y=mx+n与,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是( )
A. B. C. D.
若的整数部分是,小数部分是,则______________.
在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(,).如图,若曲线与此正方形的边有交点,则的取值范围是 .
某厂仓库储存了部分原料,按原计划每时消耗2 t,可用60 h.由于技术革新,实际生产能力有所提高,即每时消耗的原料量大于计划消耗的原料量.设现在每时消耗原料x(单位:t),库存的原料可使用的时间为y(单位:h).
(1)写出y关于x的函数解析式,并求出自变量的取值范围;
(2)若恰好经过24 h才有新的原料进厂,为了使机器不停止运转,则x应控制在什么范围内?
如图,已知直线y=x与反比例函数y=(k>0)的图象交于A,B两点,且点A的横坐标为4.
(1)求k的值.
(2)若反比例函数y=的图象上一点C的纵坐标为8,求△AOC的面积.
(3)若过原点O的另一条直线l交反比例函数y= (k>0)的图象于P,Q两点(点P在第一象限),以A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.
(1)求证:PA是⊙O的切线;
(2)若BC=8 ,AB=6,求sin∠ABD的值.
计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.
已知:直线AB∥CD,点E,F分别在直线AB,CD上,点M为平面内一点.
(1)如图1,∠AEM,∠M,∠CFM的数量关系为 ;(直接写出答案)
(2)如图2,∠AEM=48°,MN平分∠EMF,FH平分∠MFC,MK∥FH,求∠NMK的度数;
(3)如图3,点P为CD上一点,∠BEF=n·∠MEF,∠PMQ=n·∠PME,过点M作MN∥EF交AB于点N,请直接写出∠PMQ,∠BEF,∠PMN之间的数量关系.(用含n的式子表示)
如图,矩形纸片ABCD,AB=3,AD=5,折叠纸片,使点A落在BC边上的E处,折痕为PQ,当点E在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E在BC边上可移动的最大距离为( )
A.1 B.2 C.4 D.5