题目内容
【题目】如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:△EAB≌△GAD;
(2)若AB=3 ,AG=3,求EB的长.
【答案】
(1)证明:∵四边形ABCD、AGFE是正方形,
∴AB=AD,AE=AG,∠DAB=∠EAG,
∴∠EAB=∠GAD,
在△AEB和△AGD中,
,
∴△EAB≌△GAD(SAS)
(2)证明:∵△EAB≌△GAD,
∴EB=GD,
∵四边形ABCD是正方形,AB=3 ,
∴BD⊥AC,AC=BD= AB=6,
∴∠DOG=90°,OA=OD= BD=3,
∵AG=3,
∴OG=OA+AG=6,
∴GD= =3 ,
∴EB=3 .
【解析】(1)由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS即可证得△EAB≌△GAD,(2)由(1)则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.
【考点精析】根据题目的已知条件,利用正方形的性质的相关知识可以得到问题的答案,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
练习册系列答案
相关题目