题目内容

【题目】如图,已知AB∥CD,分别探究下面两个图形中∠APC和∠PAB、∠PCD的关系,请从你所得两个关系中选出任意一个,说明你探究的结论的正确性.
结论:
(1)
(2) 选择结论: , 说明理由.

【答案】
(1)∠APC+∠PAB+∠PCD=360°
(2)∠APC=∠PAB+∠PCD;∠APC+∠PAB+∠PCD=360°或∠APC=∠PAB+∠PCD
【解析】解:(1)∠APC+∠PAB+∠PCD=360°. 理由如下:过点P作PQ∥AB,
∵AB∥CD,
∴PQ∥AB∥CD,
∴∠PAB+∠1=180°,∠2+∠PCD=180°,
∵∠APC=∠1+∠2,
∴∠APC+∠PAB+∠PCD=∠PAB+∠1+∠2+∠PCD=360°;
2)∠APC=∠PAB+∠PCD.
理由如下:过点P作PQ∥AB,
∵AB∥CD,
∴PQ∥AB∥CD,
∴∠1=∠PAB,∠2=∠PCD,
∵∠APC=∠1+∠2=∠PAB+∠PCD,
∴∠APC=∠PAB+∠PCD.
故答案为:∠APC+∠PAB+∠PCD=360°,∠APC=∠PAB+∠PCD;∠APC+∠PAB+∠PCD=360°或∠APC=∠PAB+∠PCD.

(1)首先过点P作PQ∥AB,又由AB∥CD,可得PQ∥AB∥CD,根据两直线平行,同旁内角互补,即可求得∠PAB+∠1=180°,∠2+∠PCD=180°,则可得∠APC+∠PAB+∠PCD=∠PBA+∠1+∠2+∠PCD=360°;(2)首先过点P作PQ∥AB,又由AB∥CD,可得PQ∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠PAB,∠2=∠PCD,则可得∠APC=∠PAB+∠PCD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网