题目内容
已知:关于的一元二次方程.
求证:不论取何值,方程总有两个不相等的实数根;
证明:∵△=
=
=9>0
∴不论m取何值,方程总有两个不相等的实数根.
(12分)如图,已知关于的一元二次函数()的图象与轴相交于、两点(点在点的左侧),与轴交于点,且,顶点为.
1.⑴ 求出一元二次函数的关系式;
2.⑵点为线段上的一个动点,过点作轴的垂线,垂足为.若,的面积为,求关于的函数关系式,并写出的取值范围;
3.⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.
如图,已知关于的一元二次函数()的图象与轴相交于、两点(点在点的左侧),与轴交于点,且,顶点为.(1)求出一元二次函数的关系式;(2)点为线段上的一个动点,过点作轴的垂线,垂足为.若, 的面积为,求关于的函数关系式,并写出的取值范围;(3)在(2)的条件下,当点坐标是 时, 为直角三角形.
如图,已知关于的一元二次函数()的图象与轴相交于、两点(点在点的左侧),与轴交于点,且,顶点为.(1)求出一元二次函数的关系式;(2)点为线段上的一个动点,过点作轴的垂线,垂足为.若,的面积为,求关于的函数关系式,并写出的取值范围;(3)在(2)的条件下,当点坐标是 时,为直角三角形.
如图,已知关于的一元二次函数()的图象与轴相交于、两点(点在点的左侧),与轴交于点,且,顶点为.
(1)求出一元二次函数的关系式;
(2)点为线段上的一个动点,过点作轴的垂线,垂足为.若,的面积为,求关于的函数关系式,并写出的取值范围;
(3)在(2)的条件下,当点坐标是 时,为直角三角形.