题目内容
【题目】已知整数a1,a2,a3,a4,┈满足下列条件;a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,┈,依次类推,则a2012 的值为( )
A.-2012B.-1005C.-1006D.-1007
【答案】C
【解析】
根据条件求出前几个数的值,再分n是奇数时,结果等于-,n是偶数时,结果等于-,然后把n的值代入进行计算即可得解.
a1=0,
a2=-|a1+1|=-|0+1|=-1,
a3=-|a2+2|=-|-1+2|=-1,
a4=-|a3+3|=-|-1+3|=-2,
a5=-|a4+4|=-|-2+4|=-2,
…,
所以,n是奇数时,an=-,n是偶数时,an=-,
a2012=-=-1006.
故选C.
【题目】在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
【题目】某商场计划用3 800元购进节能灯120只,这两种节能灯的进价、售价如下表:
进价(元/只) | 售价(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
(1)求甲、乙两种节能灯各进多少只?
(2)全部售完120只节能灯后,该商场获利润多少元?
【题目】某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
种型号 | 种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(进价、售价均保持不变,利润=销售收入—进货成本)
(1)求、两种型号的电器的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?
(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.