题目内容

如图,已知直线l:y=
3
2
x
及抛物线C:y=ax2+bx+c(a≠0),且抛物线C图象上部分点的对应精英家教网值如下表:
-2 -1  2  3
 y -5  0  3  4  3  0 -5
(1)求抛物线C对应的函数解析式;
(2)求直线l与抛物线C的交点A、B的坐标;
(3)若动点M在直线l上方的抛物线C上移动,求△ABM的边AB上的高h的最大值.
分析:(1)可任选三点坐标代入抛物线的解析式中进行求解即可.(可选其中与x轴的交点,用交点式二次函数通式设抛物线的解析式求解.)
(2)联立直线l和抛物线的解析式即可求出A、B的坐标.
(3)本题可通过三角形ABM的面积来求解.由于三角形AMB的面积无法直接求出,因此可将其分割成其他图形面积的和差来求解.过M作MN∥y轴交AB于N,那么三角形ABM的面积就分成了三角形AMN和BMN两部分,可以MN为底,以AB两点的横坐标的差的绝对值为高来求三角形ABM的面积,MN是抛物线的函数中与直线AB函数值的差,由此可得出关于三角形AMB的面积与M点横坐标的函数关系式.然后根据三角形ABM的面积的不同表示方法求出关于h和M点横坐标的函数关系式,根据函数的性质即可求出h的最大值.
解答:解:(1)∵抛物线C:y=ax2+bx+c(a≠0)过(-1,0),(0,3),(3,0);
∴可设二次函数的解析式为y=a(x+1)(x-3),
则有:3=a(0+1)(0-3),a=-1;
∴抛物线C对应的函数关系式为:y=-(x+1)(x-3)=-x2+2x+3.

(2)由
y=
3
2
x
y=-x2+2x+3

得:
x=-
3
2
y=-
9
4

x=2
y=3

∴A(-
3
2
,-
9
4
)和B(2,3).

(3)设点M(x,-x2+2x+3),其中-
3
2
<x<3,过点M作y轴的平行线交直线AB于点N,则N(x,
3
2
x).
且|MN|=-x2+2x+3-
3
2
x=-x2+
1
2
x+3
∴S△ABM=S△AMN+S△BMN=
1
2
|MN|(x+
3
2
)+
1
2
|MN|(2-x)
=
1
2
|MN|(
3
2
+x+2-x)
=-
7
4
x2+
7
8
x+
21
4
精英家教网
由勾股定理得:
|AB|=
(2+
3
2
)
2
+(3+
9
4
)
2
=
(
7
2
)
2
+(
21
4
)
2
=
7
4
13

又∵S△ABM=
1
2
|AB|•h,
1
2
×
7
13
4
•h=-
7
4
x2+
7
8
x+
21
4

∴h=
2
13
13
(-x2+
1
2
x+3),
故h=-
2
13
13
(x-
1
4
2+
49
13
104

∴当x=
1
4
(-
3
2
1
4
<3)时,h的最大值为
49
13
104
点评:本题主要考查了二次函数解析式的确定、函数图象交点、图形面积的求法等知识点.综合性强,难度较高.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网