题目内容
【题目】如图所示,在平面直角坐标系中有一格点三角形,该三角形的三个顶点为:A(1,1),B(﹣3,1),C(﹣3,﹣1).
(1)若△ABC的外接圆的圆心为P,则点P的坐标为_____,⊙P的半径为_____;
(2)如图所示,在11×8的网格图内,以坐标原点O点为位似中心,将△ABC按相似比2:1放大,A、B、C的对应点分别为A'、B'、C'.①画出△A'B'C';②将△A'B'C'沿x轴方向平移,需平移_____个单位长度,能使得B'C'所在的直线与⊙P相切.
【答案】(﹣1,0) 5﹣或5+
【解析】
(1)由题意可知△ABC是直角三角形,作出外接圆即可;
(2)利用位似图形的定义和性质作出图形,再根据平移的定义和性质及切线的判定即可得平移的距离.
(1)△ABC的外接圆⊙P如图所示
由图可知,点P的坐标为(﹣1,0)、半径为=,
故答案为:(﹣1,0)、;
(2)如图所示,△A′B′C′即为所求.
将△A′B′C′向右平移5﹣或5+个单位B′C′所在的直线与⊙P相切,
故答案为:5﹣或5+.
【题目】在学校组织的八年级数学竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:
请你根据提供的信息解答下列问题:
(1)此次竞赛中二班80分以上(包括80分)的人数为 ;
(2)请你将表格补充完整:
平均数(分) | 中位数(分) | 众数(分) | |
一班 | 77.6 | 80 |
|
二班 | 77.6 |
| 90 |
(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)
【题目】中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本) | 频数(人数) | 频率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合计 | 50 | c |
我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.36.
(1)统计表中的a、b、c的值;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.