题目内容

【题目】已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°
(1)求证:①AC=BD;②∠APB=50°;
(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为 , ∠APB的大小为

【答案】
(1)证明:∵∠AOB=∠COD=50°,

∴∠AOC=∠BOD,

在△AOC和△BOD中,

∴△AOC≌△BOD,

∴AC=BD,∠CAO=∠DBO,

根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,

∴∠APB=∠AOB=50°


(2)AC=BD;α
【解析】(2)解:AC=BD,∠APB=α, 理由是:)∵∠AOB=∠COD=50°,
∴∠AOC=∠BOD,
在△AOC和△BOD中,

∴△AOC≌△BOD,
∴AC=BD,∠CAO=∠DBO,
根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,
∴∠APB=∠AOB=α,
所以答案是:AC=BD,α.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网