题目内容
【题目】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:BD=CD;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由;
(3)在(2)的条件下,如果矩形AFBD是正方形,确定△ABC的形状并说明理由.
【答案】(1)见解析;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,见解析;(3)当矩形AFBD是正方形,△ABC是等腰直角三角形,见解析
【解析】
(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;
(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.
(3)根据正方形的性质和等腰直角三角形的判定定理即可得到结论.
(1)证明:∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中点,
∴AE=DE,
在△AEF和△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∴AF=BD,
∴DB=CD;
(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.
理由如下:∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD(三线合一),
∴∠ADB=90°,
∴AFBD是矩形.
(3)当矩形AFBD是正方形,△ABC是等腰直角三角形,且∠BAC=90°;
∵矩形AFBD是正方形,
∴AD=BD,
∵∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD=BD=CD=BC,
∴∠BAC=90°,
即△ABC是等腰直角三角形.
【题目】某电器超市销售每台进价分别为2000元、1700元的、两种型号的空调,如表是近两周的销售情况:
销售时段 | 销售数量 | 销售款 | |
种型号 | 种型号 | ||
第一周 | 4台 | 5台 | 20500元 |
第二周 | 5台 | 10台 | 33500元 |
(1)求、两种型号的空调的销售单价;
(2)求近两周的销售利润.