题目内容

(本题12分) 如果一个正整数能够表示为两个连续的偶数的平方差,那么称这个正整数为“神秘数”.如4=22-02;12=42-22;20=62-42.因此4、12、20这三个数都是神秘数.
(1)请你写出50以内的两个神秘数(除4、12、20外),并判断2012是否是神秘数?(不要说明理由)
(2)设两个连续偶数为2+2和2 (其中为非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?说明理由.
(3)试说明:两个连续奇数的平方差(取正数)不是神秘数.

解:(1)根据题意,得      ……
所以50以内的神秘数有28,36等。
,解得k=251
 所以2012是神秘的数。
(2)因为所以由两个连续偶数2k+2和2k的平方差构成的神秘数是4的倍数。
(3)设2k+1和2k-1是两个连续的奇数,则
即两个连续的奇数的平方差是8的倍数,所以肯定是4的倍数,根据(2)的结论是4的倍数就可以写成两个连续偶数的平方差,所以两个连续奇数的平方差也是神秘的数。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网