题目内容

【题目】如图所示,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AP、AF.
求证:
(1)AF∥BE;
(2)△ACP∽△FCA;
(3)CP=AE.

【答案】
(1)证明:∵∠B、∠F同对劣弧AP,

∴∠B=∠F,

∵BO=PO,

∴∠B=∠BPO,

∴∠F=∠BPF,

∴AF∥BE.


(2)证明:∵AC切⊙O于点A,AB是⊙O的直径,

∴∠BAC=90°.

∵AB是⊙O的直径,

∴∠BPA=90°,

∴∠EAP=90°﹣∠BEA,∠B=90°﹣∠BEA,

∴∠EAP=∠B=∠F,

又∠C=∠C,

∴△ACP∽△FCA.


(3)证明:∵∠CPE=∠BPO=∠B=∠EAP,∠C=∠C.

∴△PCE∽△ACP

∵∠EAP=∠B,∠EPA=∠APB=90°,

∴△EAP∽△ABP.

又AC=AB,

于是有

∴CP=AE.


【解析】(1)由∠B、∠F同对劣弧AP,可知两角的关系,又因BO=PO,△BOP是等腰三角形,求出∠F=∠BPF,得出结论;(2)AC切⊙O于点A,AB是⊙O的直径,证明∠EAP=∠B,故△ACP∽△FCA;(3)由∠CPE=∠BPO=∠B=∠EAP,∠C=∠C,证得三角形相似,列出比例式,可得到等式成立.
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半,以及对切线的性质定理的理解,了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网