题目内容
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.
【答案】(2,4)或(3,4)或(8,4).
【解析】试题解析:由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:
(1)如图所示,PD=OD=5,点P在点D的左侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE=,
∴OE=OD-DE=5-3=2,
∴此时点P坐标为(2,4);
(2)如图所示,OP=OD=5.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△POE中,由勾股定理得: OE=,
∴此时点P坐标为(3,4);
(3)如图所示,PD=OD=5,点P在点D的右侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得: DE=,
∴OE=OD+DE=5+3=8,
∴此时点P坐标为(8,4).
综上所述,点P的坐标为:(2,4)或(3,4)或(8,4).
练习册系列答案
相关题目