ÌâÄ¿ÄÚÈÝ
2£®Èçͼ£¬µãA¡¢µãEµÄ×ø±ê·Ö±ðΪ £¨0£¬3£©Ó루1£¬2£©£¬ÒÔµãAΪ¶¥µãµÄÅ×ÎïÏß¼ÇΪC1£ºy1=-x2+n£»ÒÔEΪ¶¥µãµÄÅ×ÎïÏß¼ÇΪC2£ºy2=ax2+bx+c£¬ÇÒÅ×ÎïÏßC2ÓëyÖá½»ÓÚµãP£¨0£¬$\frac{5}{2}$£©£®£¨1£©·Ö±ðÇó³öÅ×ÎïÏßC1ºÍC2µÄ½âÎöʽ£¬²¢ÅжÏÅ×ÎïÏßC1»á¾¹ýµãEÂð£¿
£¨2£©ÈôÅ×ÎïÏßC1ºÍC2ÖеÄy¶¼ËæxµÄÔö´ó¶ø¼õС£¬ÇëÖ±½Óд³ö´ËʱxµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄxµÄÈ¡Öµ·¶Î§ÄÚ£¬Éèеĺ¯Êýy3=y1-y2£¬Çó³öº¯Êýy3ÓëxµÄº¯Êý¹Øϵʽ£»Îʵ±xΪºÎֵʱ£¬º¯Êýy3ÓÐ×î´óÖµ£¬Çó³öÕâ¸ö×î´óÖµ£®
·ÖÎö £¨1£©´ý¶¨ÏµÊý·¨·Ö±ðÇó½â¿ÉµÃ£¬ÔÙÇó³öx=1ʱ£¬y1µÄÖµ¼´¿ÉÅжÏÅ×ÎïÏßC1ÊÇ·ñ¾¹ýµãE£»
£¨2£©·Ö±ðÇó³öÁ½º¯ÊýyËæxµÄÔö´ó¶ø¼õСʱxµÄ·¶Î§¿ÉµÃ´ð°¸£»
£¨3£©½«y1¡¢y2´úÈëy3=y1-y2ÕûÀí³ÉÒ»°ãʽ£¬ÔÙÅä·½³É¶¥µãʽ¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⽫µãA£¨0£¬3£©´úÈëy1=-x2+n£¬µÃ£ºn=3£¬
¡ày1=-x2+3£»
¡ßÅ×ÎïÏßC2µÄ¶¥µã×ø±êΪ£¨1£¬2£©£¬
¡àÉèÅ×ÎïÏßC2µÄ½âÎöʽΪy=a£¨x-1£©2+2£¬
½«µãP£¨0£¬$\frac{5}{2}$£©´úÈ룬µÃ£ºa+2=$\frac{5}{2}$£¬
½âµÃ£ºa=$\frac{1}{2}$£¬
¡àÅ×ÎïÏßC2µÄ½âÎöʽΪy2=$\frac{1}{2}$£¨x-1£©2+2=$\frac{1}{2}$x2-x+$\frac{5}{2}$£¬
µ±x=1ʱ£¬y1=-12+3=2£¬
¡àÅ×ÎïÏßC1¾¹ýµãE£»
£¨2£©ÔÚy1=-x2+3£¬µ±x£¾0ʱ£¬yËæxµÄÔö´ó¶ø¼õС£¬
ÔÚy2=$\frac{1}{2}$£¨x-1£©2+2ÖУ¬µ±x£¼1ʱ£¬yËæxµÄÔö´ó¶ø¼õС£¬
¡àµ±0£¼x£¼1ʱ£¬Å×ÎïÏßC1ºÍC2ÖеÄy¶¼ËæxµÄÔö´ó¶ø¼õС£»
£¨3£©y3=y1-y2=-x2+3-£¨$\frac{1}{2}$x2-x+$\frac{5}{2}$£©=-$\frac{3}{2}$x2+x+$\frac{1}{2}$=-$\frac{3}{2}$£¨x-$\frac{1}{3}$£©2+$\frac{2}{3}$£¬
¡ß0£¼x£¼1£¬
¡àµ±x=$\frac{1}{3}$ʱ£¬º¯Êýy3ÓÐ×î´óÖµ£¬×î´óֵΪ$\frac{2}{3}$£®
µãÆÀ ´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ¼°¶þ´Îº¯ÊýµÄÐÔÖÊ£¬ÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨ºÍ¶þ´Îº¯ÊýµÄÔö¼õÐÔÊǽⱾÌâµÄ¹Ø¼ü£®
A£® | Õý·ÖÊýºÍ¸º·ÖÊýͳ³ÆΪ·ÖÊý | B£® | 0¼ÈÊÇÕûÊýÒ²ÊǸºÕûÊý | ||
C£® | ÕýÕûÊý¡¢¸ºÕûÊýͳ³ÆΪÕûÊý | D£® | ÕýÊýºÍ¸ºÊýͳ³ÆΪÓÐÀíÊý |