题目内容
抛物线y=2x2+4x﹣2的顶点坐标是_______________.
随着数系不断扩大,我们引进新数i,新 i满足交换率、结合律,并规定:i2=﹣1,那么(2+i)(2﹣i)=________(结果用数字表示).
抽屉里放着黑、白两种颜色的袜子各1双(除颜色外其余都相同),在看不到的情况下随机摸出两只袜子,它们恰好同色的概率是________.
如图,已知直线y=﹣x+2与x轴、y轴分别交于点B、C,抛物线y=﹣+bx+c过点B、C,且与x轴交于另一个点A.
(1)求该抛物线的表达式;
(2)点M是线段BC上一点,过点M作直线l∥y轴交该抛物线于点N,当四边形OMNC是平行四边形时,求它的面积;
(3)联结AC,设点D是该抛物线上的一点,且满足∠DBA=∠CAO,求点D的坐标.
从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为_____.
函数y=的定义域是________.
如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.
(1)求证:PB是⊙O的切线;
(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为 时,四边形ADPB为菱形,当弧CD长为 时,四边形ADCB为矩形.
如图,将等边△ABC的边AC逐渐变成以B为圆心、BA为半径的,长度不变,AB、BC的长度也不变,则∠ABC的度数大小由60°变为( )
A. ()° B. ()° C. ()° D. ()°
化简: