题目内容
【题目】已知a、b、c、为△ABC的三边长,且a2+b2=8a+12b﹣52,其中c是△ABC中最短的边长,且c为整数,求c的值.
【答案】 3,4.
【解析】
试题分析:由a2+b2=8a+12b﹣52,得a,b的值.进一步根据三角形一边边长大于另两边之差,小于它们之和,则b﹣a<c<a+b,即可得到答案.
解:∵a2+b2=8a+12b﹣52
∴a2﹣8a+16+b2﹣12b+36=0
∴(a﹣4)2+(b﹣6)2=0
∴a=4,b=6
∴6﹣4<c<6+4
即 2<c<10.
∴整数c可取 3,4.
练习册系列答案
相关题目