题目内容
【题目】在矩形ABCD中,AB=10,BC=12,E为DC的中点,连接BE,作AF⊥BE,垂足为F.
(1)求证:△BEC∽△ABF;
(2)求AF的长.
【答案】(1)证明见解析;(2).
【解析】
试题分析:由矩形ABCD中,AB=10,BC=12,E为DC的中点,由勾股定理可求得BE的长,又由AF⊥BE,易证得△ABF∽△BEC,然后由相似三角形的对应边成比例,求得AF的长.
试题解析:(1)证明:在矩形ABCD中,有
∠C=∠ABC=∠ABF+∠EBC=90°,
∵AF⊥BE,∴∠AFB=∠C=90°
∴∠ABF+∠BAF=90°
∴∠BAF=∠EBC
∴△BEC∽△ABF
(2)解:在矩形ABCD中,AB=10,∴CD=AB=10,
∵E为DC的中点,∴CE=5,
又BC=12,在Rt△BEC中,由勾股定理得BE=13,
由△ABF∽△BEC得
即,解得AF=
考点: 1.相似三角形的判定与性质;2.勾股定理;3.矩形的性质.
练习册系列答案
相关题目
【题目】6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学举行了“环保知识竞赛”,参赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和不完整的频数分布直方图如下:
(1)直接写出a的值,并补全频数分布直方图.
分组 | 频数 | 频率 |
49.5~59.5 | 0.08 | |
59.5~69.5 | 0.12 | |
69.5~79.5 | 20 | |
79.5~89.5 | 32 | |
89.5~100.5 | a |
(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?
(3)若这组被抽查的学生成绩的中位数是80分,请直接写出被抽查的学生中得分为80分的至少有多少人?