题目内容
【题目】如图,在 Rt△ABC 中,∠BAC=90°,AD⊥BC 于 D,BE 平分∠ABC 交 AC 于 E, 交 AD 于 F,FG∥BC,FH∥AC,下列结论:①AE=AF;②ΔABF≌ΔHBF;③AG=CE;④AB+FG=BC,其中正确的结论有()
A.①②③B.①③④C.①②③④D.①②④
【答案】C
【解析】
只要证明∠AFE=∠AEF,四边形FGCH是平行四边形,△FBA≌△FBH即可解决问题;
解:∵∠FBD=∠ABF,∠FBD+∠BFD=90°,∠ABF+∠AEB=90°,
∴∠BFD=∠AEB,
∴∠AFE=∠AEB,
∴AF=AE,故①正确,
∵FG∥BC,FH∥AC,
∴四边形FGCH是平行四边形,
∴FH=CG,FG=CH,∠FHD=∠C,
∵∠BAD+∠DAC=90°,∠DAC+∠C=90°,
∴∠BAF=∠BHF,
∵BF=BF,∠FBA=∠FBH,
∴△FBA≌△FBH,
∴FA=FH,故AB=BH,②正确,
∵AF=AE,FH=CG,
∴AE=CG,
∴AG=CE,故③正确,
∵BC=BH+HC,BH=BA,CH=FG,
∴BC=AB+FG,故④正确.
故选C.
练习册系列答案
相关题目