题目内容

【题目】△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)

(1)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.

请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是   三角形;∠ADB的度数为   

(2)在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;

(3)在原问题中,过点A作直线AE⊥BD,交直线BDE,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为   

【答案】(1)①△D′BC是等边三角形,②∠ADB=30°(2)∠ADB=30°;(3)7+或7﹣

【解析】

(1)①如图2中,作∠ABD′=ABD,BD′=BD,连接CD′,AD′,由ABD≌△ABD′,推出D′BC是等边三角形;

②借助①的结论,再判断出AD′B≌△AD′C,得∠AD′B=AD′C,由此即可解决问题.

(2)60°<α≤120°时,如图3中,作∠ABD′=ABD,BD′=BD,连接CD′,AD′,证明方法类似(1).

(3)第①种情况:当60°<α≤120°时,如图3中,作∠ABD′=ABD,BD′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.

(1)①如图2中,作∠ABD′=ABD,BD′=BD,连接CD′,AD′,

AB=AC,BAC=90°,

∴∠ABC=45°,

∵∠DBC=30°,

∴∠ABD=ABC﹣DBC=15°,

ABDABD′中,

∴△ABD≌△ABD′,

∴∠ABD=ABD′=15°,ADB=AD′B,

∴∠D′BC=ABD′+ABC=60°,

BD=BD′,BD=BC,

BD′=BC,

∴△D′BC是等边三角形,

②∵△D′BC是等边三角形,

D′B=D′C,BD′C=60°,

AD′BAD′C中,

∴△AD′B≌△AD′C,

∴∠AD′B=AD′C,

∴∠AD′B=BD′C=30°,

∴∠ADB=30°.

(2)∵∠DBC<ABC,

60°<α≤120°,

如图3中,作∠ABD′=ABD,BD′=BD,连接CD′,AD′,

AB=AC,

∴∠ABC=ACB,

∵∠BAC=α,

∴∠ABC=(180°﹣α)=90°﹣α,

∴∠ABD=ABC﹣DBC=90°﹣α﹣β,

同(1)①可证ABD≌△ABD′,

∴∠ABD=ABD′=90°﹣α﹣β,BD=BD′,ADB=AD′B

∴∠D′BC=ABD′+ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),

α+β=120°,

∴∠D′BC=60°,

由(1)②可知,AD′B≌△AD′C,

<>∴∠AD′B=AD′C,

∴∠AD′B=BD′C=30°,

∴∠ADB=30°.

(3)第①情况:当60°<α<120°时,如图3﹣1,

由(2)知,∠ADB=30°,

AEBD,

RtADE中,∠ADB=30°,AD=2,

DE=

∵△BCD'是等边三角形,

BD'=BC=7,

BD=BD'=7,

BE=BD﹣DE=7﹣

第②情况:当0°<α<60°时,

如图4中,作∠ABD′=ABD,BD′=BD,连接CD′,AD′.

同理可得:∠ABC=(180°﹣α)=90°﹣α,

∴∠ABD=DBC﹣ABC=β﹣(90°﹣α),

同(1)①可证ABD≌△ABD′,

∴∠ABD=ABD′=β﹣(90°﹣α),BD=BD′,ADB=AD′B,

∴∠D′BC=ABC﹣ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),

D′B=D′C,BD′C=60°.

同(1)②可证AD′B≌△AD′C,

∴∠AD′B=AD′C,

∵∠AD′B+AD′C+BD′C=360°,

∴∠ADB=AD′B=150°,

RtADE中,∠ADE=30°,AD=2,

DE=

BE=BD+DE=7+

故答案为:7+7﹣

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网