题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,点F为AC延长线上的一点,连接DF.
(1)求∠CBE的度数;
(2)若∠F=25°,求证:BE∥DF.
【答案】(1)∠CBD=65°;(2)证明见解析.
【解析】
(1)先根据直角三角形两锐角互余求出∠ABC=90°-∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=65°;
(2)先根据三角形外角的性质得出∠CEB=90°-65°=25°,再根据∠F=25°,即可得出BE∥DF.
解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,
∴∠ABC=90°-∠A=50°,
∴∠CBD=130°.
∵BE是∠CBD的平分线,
∴∠CBE=∠CBD=65°;
(2)∵∠ACB=90°,∠CBE=65°,
∴∠CEB=90°-65°=25°.
又∵∠F=25°,
∴∠F=∠CEB=25°,
∵DF∥BE.
练习册系列答案
相关题目
【题目】某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:
日销售单价x(元) | 3 | 4 | 5 | 6 |
日销售量y(个) | 20 | 15 | 12 | 10 |
(1)猜测并确定y与x之间的函数关系式,并画出图象;
(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式,
(3)若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?