题目内容

【题目】如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图所示二次函数y1x2+2x+2y2x22x+2是“关于y轴对称二次函数”.

1)直接写出两条图中“关于y轴对称二次函数”图象所具有的共同特点.

2)二次函数y2x+22+1的“关于y轴对称二次函数”解析式为   ;二次函数yaxh2+k的“关于y轴对称二次函数”解析式为   

3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为BC,且BC6,顺次连接点ABOC得到一个面积为24的菱形,求“关于y轴对称二次函数”的函数表达式.

【答案】1)详见解析;(2y2x22+1yax+h2+k;(3y=﹣x324

【解析】

1)根据关于y轴对称二次函数,可得答案;

2)根据关于y轴对称二次函数,可得答案;

3)根据关于y轴对称二次函数,菱形的面积,可得顶点坐标,图象与y轴的交点,根据待定系数法,可得答案.

解:(1)直接写出两条图中“关于y轴对称二次函数”图象所具有的共同特点时顶点关于y轴对称,对称轴关于y轴对称,

2)二次函数y2x+22+1的“关于y轴对称二次函数”解析式为 y2x22+1

二次函数yaxh2+k的“关于y轴对称二次函数”解析式为yax+h2+k

故答案为:y2x22+1yax+h2+k

3)如图:

BC6,顺次连接点ABOC得到一个面积为24的菱形,得

OA8A点坐标为(08),B点的坐标为(﹣34),

设一个抛物线的解析式为yax+32+4,将A点坐标代入,得

9a+48

解得a

yx+32+4关于y轴对称二次函数的函数表达式yx32+4

根据对称性,开口向下的抛物线也符合题意,

“关于y轴对称二次函数”的函数表达式为y=﹣x+324关于y轴对称二次函数的函数表达式y=﹣x324

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网