题目内容
【题目】如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是( )
A. ①②③④B. ②③④C. ①③④D. ①②③
【答案】A
【解析】
由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.
∵△ABC和△CDE是正三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ADC≌△BEC(SAS),故①正确,
∴AD=BE,故②正确;
∵△ADC≌△BEC,
∴∠ADC=∠BEC,
∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;
∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,
∴△CDP≌△CEQ(ASA).
∴CP=CQ,
∴∠CPQ=∠CQP=60°,
∴△CPQ是等边三角形,故④正确;
故选:A.
练习册系列答案
相关题目