题目内容
已知三角形三边为a、b、c,其中a、b满足
【答案】分析:根据非负数的性质列式求出a,b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求解即可.
解答:解:根据题意得,a2-12a+36=0,b-8=0,
解得a=6,b=8,
∵8-6=2,8+6=14,
∴2<c<14,
∵这个三角形的最大边是c,
∴8<c<14.
故答案为:8<c<14.
点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
解答:解:根据题意得,a2-12a+36=0,b-8=0,
解得a=6,b=8,
∵8-6=2,8+6=14,
∴2<c<14,
∵这个三角形的最大边是c,
∴8<c<14.
故答案为:8<c<14.
点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
练习册系列答案
相关题目