题目内容
【题目】如图,已知抛物线与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线
,则下列结论正确的是
_____.(写出所有正确结论的序号)①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.
【答案】③④.
【解析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=>0,可得b<0,据此判断即可.
②根据抛物线y=ax2+bx+c的图象,可得x=﹣1时,y>0,即a﹣b+c>0,据此判断即可.
③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.
④根据函数的最小值是,判断出c=﹣1时,a、b的关系即可.
解:∵抛物线开口向上,∴a>0,又∵对称轴为x=>0,∴b<0,∴结论①不正确;
∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;
∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;
∵,c=﹣1,∴b2=4a,∴结论④正确.
综上,结论正确的是:③④.
故答案为:③④.
“点睛”(1)此题主要考查了二次函数的图象与几何变换,要熟练掌握,解答此类问题的关键是要明确:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
(2)此题还考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应选 .
甲 | 乙 | 丙 | 丁 | |
平均数(cm) | 185 | 180 | 185 | 180 |
方差 | 3.6 | 3.6 | 7.9 | 8.2 |