题目内容

如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转60°后,得到△P′AB,则点P与P′之间的距离为
6
6
,∠APB=
150°
150°
分析:连接PP′,根据旋转的性质得到∠PAP′=60°,PA=PA′=6,P′B=PC=10,利用等边三角形的判定方法得到△PAP′为等边三角形,再根据等边三角形的性质有PP′=PA=6,∠P′PA=60°,由于PP′2+PB2=P′B2,根据勾股定理的逆定理得到△BPP′为直角三角形,且∠BPP′=90°,则∠APB=∠P′PB+∠BPP′=60°+90°=150°.
解答:解:连接PP′,如图,
∵△PAC绕点A逆时针旋转60°后,得到△P′AB,
∴∠PAP′=60°,PA=PA′=6,P′B=PC=10,
∴△PAP′为等边三角形,
∴PP′=PA=6,∠P′PA=60°,
在△BPP′中,P′B=10,PB=8,PP′=6,
∵62+82=102
∴PP′2+PB2=P′B2
∴△BPP′为直角三角形,且∠BPP′=90°,
∴∠APB=∠P′PB+∠BPP′=60°+90°=150°.
故答案为6,150°.
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网