题目内容

(2008•广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE
(1)求证:四边形OGCH是平行四边形;
(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;
(3)求证:CD2+3CH2是定值.

【答案】分析:(1)连接OC,容易根据已知条件证明四边形ODCE是矩形,然后利用其对角线互相平分和DG=GH=HE可以知道四边形CHOG的对角线互相平分,从而判定其是平行四边形;
(2)由于四边形ODCE是矩形,而矩形的对角线相等,所以DE=OC,而CO是圆的半径,这样DE的长度不变,也就DG的长度不变;
(3)过C作CN⊥DE于N,设CD=x,然后利用三角形的面积公式和勾股定理用x表示CN,DN,HN,再利用勾股定理就可以求出CD2+3CH2的值了.
解答:(1)证明:连接OC交DE于M.
由矩形得OM=CM,EM=DM.
∵DG=HE.
∴EM-EH=DM-DG.
∴HM=GM.
∴四边形OGCH是平行四边形.

(2)解:DG不变.
在矩形ODCE中,∵DE=OC=3.
∴DG=1.

(3)证明:设CD=x,则CE=.过C作CN⊥DE于N.
由DE•CN=CD•EC得CN=

∴HN=3-1-
∴3CH2=3[(2+(2]=12-x2
∴CD2+3CH2=x2+12-x2=12.
点评:本小题主要考查圆、矩形、平行四边形、直角三角形等基础图形的性质与判定,考查计算能力、推理能力和空间观念.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网