题目内容

数学公式沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是


  1. A.
    3数学公式
  2. B.
    8
  3. C.
    数学公式
  4. D.
    2数学公式
A
分析:若连接CD、AC,则根据同圆或等圆中,相等的圆周角所对的弦相等,求得AC=AD;过C作AB的垂线,设垂足为E,则DE=AD,由此可求出BE的长,进而可在Rt△ABC中,根据射影定理求出BC的长.
解答:解:连接CA、CD;
根据折叠的性质,知所对的圆周角等于∠CBD,
又∵所对的圆周角是∠CBA,
∵∠CBD=∠CBA,
∴AC=CD(相等的圆周角所对的弦相等);
∴△CAD是等腰三角形;
过C作CE⊥AB于E.
∵AD=4,则AE=DE=2;
∴BE=BD+DE=7;
在Rt△ACB中,CE⊥AB,根据射影定理,得:
BC2=BE•AB=7×9=63;
故BC=3
故选A.
点评:此题考查的是折叠的性质、圆周角定理、以及射影定理;能够根据圆周角定理来判断出△ACD是等腰三角形,是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网