题目内容
【题目】已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.
【答案】3
【解析】试题分析:首先通过点A求出两个函数解析式,然后联立方程组,方程组的解就是两线的交点坐标;确定点B坐标后,再求直线与y轴交点G,就可用割补法求△OAB面积.
解:∵一次函数y=kx﹣2的图象过点A(﹣1,﹣1),
∴﹣1=﹣k﹣2,解得k=﹣1,
∴一次函数表达式为y=﹣x﹣2,
∴令x=0,得y=﹣2,
∴G(0,﹣2),
∵函数y=ax2图象过点A(﹣1,﹣1),
∴﹣1=a×(-1)2,解得a =﹣1,
∴二次函数表达式为y=﹣x2,
由一次函数与二次函数联立可得,
解得, ,
∴B(2,-4)
∴
练习册系列答案
相关题目
【题目】甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)
数与代数 | 空间与图形 | 统计与概率 | 综合与实践 | |
学生甲 | 93 | 93 | 89 | 90 |
学生乙 | 94 | 92 | 94 | 86 |
(1)分别计算甲、乙同学成绩的中位数;
(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?