题目内容
(2012•黔南州)已知:如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.
(1)求证:CD为⊙O的切线;
(2)过点C作CE⊥AB于E.若CE=2,cosD=
,求AD的长.
(1)求证:CD为⊙O的切线;
(2)过点C作CE⊥AB于E.若CE=2,cosD=
4 | 5 |
分析:(1)先连接CO,根据AB是⊙O直径,得出∠1+∠OCB=90°,再根据AO=CO,得出∠1=∠A,最后根据∠4=∠A,证出OC⊥CD,即可得出CD为⊙O的切线;
(2)根据OC⊥CD,得出∠3+∠D=90°,再根据CE⊥AB,得出∠3+∠2=90°,从而得出cos∠2=cosD,再在△OCD中根据余弦定理得出CO的值,最后根据⊙O的半径为
,即可得出AD的长.
(2)根据OC⊥CD,得出∠3+∠D=90°,再根据CE⊥AB,得出∠3+∠2=90°,从而得出cos∠2=cosD,再在△OCD中根据余弦定理得出CO的值,最后根据⊙O的半径为
5 |
2 |
解答:证明:(1)连接CO,
∵AB是⊙O直径
∴∠1+∠OCB=90°,
∵AO=CO,
∴∠1=∠A.
∵∠4=∠A,
∴∠4+∠OCB=90°.
即∠OCD=90°.
∴OC⊥CD.
又∵OC是⊙O半径,
∴CD为⊙O的切线.
(2)∵OC⊥CD于C,
∴∠3+∠D=90°.
∵CE⊥AB于E,
∴∠3+∠2=90°.
∴∠2=∠D.
∴cos∠2=cosD,
在△OCD中,∠OCD=90°,
∴cos∠2=
∵cosD=
,CE=2,
∴
=
,
∴CO=
,
∴⊙O的半径为
.
∴OD=
=
,
AD=
.
∵AB是⊙O直径
∴∠1+∠OCB=90°,
∵AO=CO,
∴∠1=∠A.
∵∠4=∠A,
∴∠4+∠OCB=90°.
即∠OCD=90°.
∴OC⊥CD.
又∵OC是⊙O半径,
∴CD为⊙O的切线.
(2)∵OC⊥CD于C,
∴∠3+∠D=90°.
∵CE⊥AB于E,
∴∠3+∠2=90°.
∴∠2=∠D.
∴cos∠2=cosD,
在△OCD中,∠OCD=90°,
∴cos∠2=
CE |
CO |
∵cosD=
4 |
5 |
∴
2 |
CO |
4 |
5 |
∴CO=
5 |
2 |
∴⊙O的半径为
5 |
2 |
∴OD=
OC |
tanD |
25 |
6 |
AD=
20 |
3 |
点评:本题考查了切线的判定与性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可,同时考查了三角函数的知识.
练习册系列答案
相关题目