题目内容
【题目】如图,在矩形中,为边上一点,平分,为的中点,连接,过点作分别交于,两点.
(1)求证:;
(2)求证:;
(3)当时,请直接写出的长.
【答案】(1)证明见解析;(2)证明见解析;(3)4 .
【解析】
试题分析:(1)根据平行线的性质以及角平分线的定义,即可得到∠DCE=∠DEC,进而得出DE=DC;
(2)连接DF,根据等腰三角形的性质得出∠DFC=90°,再根据直角三角形斜边上中线的性质得出BF=CF=EF= EC,再根据SAS判定△ABF≌△DCF,即可得出∠AFB=∠DFC=90°,据此可得AF⊥BF;
(3)根据等角的余角相等可得∠BAF=∠FEH,再根据公共角∠EFG=∠AFE,即可判定△EFG∽△AFE,进而得出EF2=AFGF=28,求得EF=2,即可得到CE=2EF=4.
试题解析:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠DCE=∠CEB,
∵EC平分∠DEB,∴∠DEC=∠CEB,∴∠DCE=∠DEC,∴DE=DC;
(2)如图,连接DF,
∵DE=DC,F为CE的中点,∴DF⊥EC,∴∠DFC=90°,
在矩形ABCD中,AB=DC,∠ABC=90°,∴BF=CF=EF=EC,∴∠ABF=∠CEB,
∵∠DCE=∠CEB,∴∠ABF=∠DCF,
在△ABF和△DCF中, ,∴△ABF≌△DCF(SAS),∴∠AFB=∠DFC=90°,
∴AF⊥BF;
(3)CE=4 .
理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,
∵EH∥BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,
∵∠ABF=∠CEB,∴∠BAF=∠FEH,
∵∠EFG=∠AFE,∴△EFG∽△AFE,∴ ,即EF2=AFGF,
∵AFGF=28,∴EF=2 ,∴CE=2EF=4.