题目内容

(11·丹东)(本题12分)已知:正方形ABCD.

(1)如图1,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.

(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转,当时,连接BE、DF,此时(1)中结论是否成立,如果成立,请证明;如果不成立,请说明理由.

(3)如图3,等腰直角三角形FAE绕直角顶点A顺时针旋转,当时,连接BE、DF,猜想当AE与AD满足什么数量关系时,直线DF垂直平分BE.请直接写出结论.

(4)如图4,等腰直角三角形FAE绕直角顶点A顺时针旋转,当时,连接BD、DE、EF、FB得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.

 

(1)BE=DF且BE⊥DF

(2)成立        

证明:延长DF交AB于点H,交BE于点G.

中,  

        

∴       

又∵ 

∴ 

∴ BE=DF且BE⊥DF仍成立

(3)         

(4)菱形

解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网