题目内容
如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?
- A.10
- B.11
- C.12
- D.13
C
分析:根据在直角三角形中,斜边上的中线等于斜边的一半着一性质可求出AB的长,再根据勾股定理即可求出BE的长.
解答:∵BE⊥AC,
∴△AEB是直角三角形,
∵D为AB中点,DE=10,
∴AB=20,
∵AE=16,
∴BE==12,
故选C.
点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.
分析:根据在直角三角形中,斜边上的中线等于斜边的一半着一性质可求出AB的长,再根据勾股定理即可求出BE的长.
解答:∵BE⊥AC,
∴△AEB是直角三角形,
∵D为AB中点,DE=10,
∴AB=20,
∵AE=16,
∴BE==12,
故选C.
点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.
练习册系列答案
相关题目