题目内容
【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E,H分别在AB,AC上,已知BC=40cm,AD=30cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与面积.
【答案】(1)详见解析;(2)正方形EFGH的边长为cm,面积为 cm2.
【解析】试题分析:(1)由正方形可得EH∥BC,所以可以得到对应的两组角相等,即可证明相似;(2)设正方形边长为x,再由△AEH∽△ABC得到对应边成比例,列出关于x的方程,解出x即可.
试题解析:
(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC;
(2)解:∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM.设正方形EFGH的边长为xcm,∵△AEH∽△ABC,∴ ,∴,解得x=.
∴正方形EFGH的边长为cm,面积为 cm2.
点睛:两个三角形的相似比等于对应的高之比,角平分线之比,中线之比.
练习册系列答案
相关题目