题目内容
【题目】已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0
(1)求证:无论k为任何实数,方程总有实数根;
(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.
【答案】(1)见解析(2)k=1或k=﹣.
【解析】
试题分析:(1)确定判别式的范围即可得出结论;
(2)根据根与系数的关系表示出x1+x2,x1x2,继而根据题意得出方程,解出即可.
(1)证明:①当k=0时,方程是一元一次方程,有实数根;
②当k≠0时,方程是一元二次方程,
∵△=(3k﹣1)2﹣4k×2(k﹣1)=(k+1)2≥0,
∴无论k为任何实数,方程总有实数根.
(2)解:∵此方程有两个实数根x1,x2,
∴x1+x2=,x1x2=,
∵|x1﹣x2|=2,
∴(x1﹣x2)2=4,
∴(x1+x2)2﹣4x1x2=4,即﹣4×=4,
解得:=±2,
即k=1或k=﹣,
经检验k=1或k=﹣是方程的解,
则k=1或k=﹣.
【题目】中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:
抽取的200名学生海选成绩分组表
组别 | 海选成绩x |
A组 | 50≤x<60 |
B组 | 60≤x<70 |
C组 | 70≤x<80 |
D组 | 80≤x<90 |
E组 | 90≤x<100 |
请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为 ,表示C组扇形的圆心角θ的度数为 度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?