题目内容
如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=-2x-1经过抛物线上一点B(-2,m)且与y 轴交于点C,与抛物线的对称轴交于点F.
(1)求抛物线的解析式;
(2)P(x,y)是x轴上方抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;
(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请求出点M的运动时间t的值;若不能,请说明理由.
练习册系列答案
相关题目
在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:
跳高成绩(m) | 1.50 | 1.55 | 1.60 | 1.65 | 1.70 | 1.75 |
跳高人数 | 1 | 3 | 2 | 3 | 5 | 1 |
这些运动员跳高成绩的中位数和众数分别是( )
A. 1.65,1.70 B. 1.70,1.65 C. 1.70,1.70 D. 3,5